Synergistic function of four novel thermostable glycoside hydrolases from a long-term enriched thermophilic methanogenic digester

نویسندگان

  • Meng Wang
  • Guo-Li Lai
  • Yong Nie
  • Shuang Geng
  • Liming Liu
  • Baoli Zhu
  • Zhongping Shi
  • Xiao-Lei Wu
چکیده

In biofuel production from lignocellulose, low thermostability and product inhibition strongly restrict the enzyme activities and production process. Application of multiple thermostable glycoside hydrolases, forming an enzyme "cocktail", can result in a synergistic action and therefore improve production efficiency and reduce operational costs. Therefore, increasing enzyme thermostabilities and compatibility are important for the biofuel industry. In this study, we reported the screening, cloning and biochemical characterization of four novel thermostable lignocellulose hydrolases from a metagenomic library of a long-term dry thermophilic methanogenic digester community, which were highly compatible with optimal conditions and specific activities. The optimal temperatures of the four enzymes, β-xylosidase, xylanase, β-glucosidase, and cellulase ranged from 60 to 75°C, and over 80% residual activities were observed after 2 h incubation at 50°C. Mixtures of these hydrolases retained high residual synergistic activities after incubation with cellulose, xylan, and steam-exploded corncob at 50°C for 72 h. In addition, about 55% dry weight of steam-exploded corncob was hydrolyzed to glucose and xylose by the synergistic action of the four enzymes at 50°C for 48 h. This work suggested that since different enzymes from a same ecosystem could be more compatible, screening enzymes from a long-term enriching community could be a favorable strategy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Supplementing with Non-Glycoside Hydrolase Proteins Enhances Enzymatic Deconstruction of Plant Biomass

The glycoside hydrolases (GH) of Caldicellulosiruptor bescii are thermophilic enzymes, and therefore they can hydrolyze plant cell wall polysaccharides at high temperatures. Analyses of two C. bescii glycoside hydrolases, CbCelA-TM1 and CbXyn10A with cellulase and endoxylanase activity, respectively, demonstrated that each enzyme is highly thermostable under static incubation at 70°C. Both enzy...

متن کامل

Phylogenetic description of immobilized methanogenic community using real-time PCR in a fixed-bed anaerobic digester.

After immobilization of anaerobes on polyurethane foam in a thermophilic, fixed-bed, anaerobic digester supplied with acetate, the results of real-time PCR analysis indicated that the major immobilized methanogenic archaea were Methanosarcina spp., and that the major free-living methanogenic archaea were Methanosarcina and Methanobacterium spp. 16S rRNA gene densities of Methanosarcina spp. and...

متن کامل

Biochemical Characterization of A Novel Thermophilic Esterase Isolated from Shewanella sp F88

The main objective of this study was to purify and characterize an esterase from Shewanella sp F88. The enzyme was purified 41-fold and an overall yield of 21 %, using a two-step procedure, including ammonium sulfate precipitation and Q-sepharore chromatography. Molecular weight of the enzyme was 62.3 kDa according to SDS-PAGE data. The enzyme showed an optimum activity at pH 6.5 and 58 ˚C. Evo...

متن کامل

Structural basis for thermostability of beta-glycosidase from the thermophilic eubacterium Thermus nonproteolyticus HG102.

The three-dimensional structure of a thermostable beta-glycosidase (Gly(Tn)) from the thermophilic eubacterium Thermus nonproteolyticus HG102 was determined at a resolution of 2.4 A. The core of the structure adopts the (betaalpha)(8) barrel fold. The sequence alignments and the positions of the two Glu residues in the active center indicate that Gly(Tn) belongs to the glycosyl hydrolases of re...

متن کامل

Methyl coenzyme M reductase (mcrA) gene abundance correlates with activity measurements of methanogenic H2/CO2-enriched anaerobic biomass

Biologically produced methane (CH₄) from anaerobic digesters is a renewable alternative to fossil fuels, but digester failure can be a serious problem. Monitoring the microbial community within the digester could provide valuable information about process stability because this technology is dependent upon the metabolic processes of microorganisms. A healthy methanogenic community is critical f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015